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J. Phys. A:  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Spherical probe in a flowing plasma 

J. G. ANDREWS and D. T. SWIFT-HOOK 
Marchwood Engineering Laboratories, Central Electricity Generating Board, 
Marchwood, Southampton, England 
MS.  received 25th August 1970 

Abstract. Ion flow is important in many laboratory discharges, vacuum 
switches, gas-filled valves, thyratrons and space satellites. A model is presented 
for subsonic ion flow past a negative spherical probe immersed in a collisionless 
ionization-free plasma; a stagnation point develops downstream. Although the 
floating potential given by previous analyses (which all assume spherical 
symmetry) is substantially correct, there is some dependence on the ion flow 
velocity (a few :h at M = 0.5). Thus the change in floating potential can be 
used to measure ion flow. In general, only slight modification needs to be 
made to low pressure probe theories in order to include flow effects. 

1. Introduction 
I n  recent years the ‘cold ion approximation’ has been applied to a wide variety of 

problems in low pressure plasmas. In  the cold ion approximation the velocity dis- 
persion of the ions is ignored, that is, all the ions are assumed to have the same velocity 
at any point in the plasma. This model has been used to describe waves in plasmas 
(Woods 1965, Bertotti et al. 1966, Allen and Andrews 1970, Rosa and Allen 1970, 
Andrews 1970), plasmas in magnetic fields (Forrest and Franklin 1966) and the prob- 
lem of the transition from a collisionless to a diffusion-dominated positive column 
(Forrest and Franklin 1968). There has also been some interest in using the cold ion 
approximation to describe asymmetrical ion flow in a plasma; Stangeby and Allen 
(1970) have used it to show that the plasma boundary must coincide with a Mach 
surface, that is, the normal component of the ion velocity at the plasma boundary 
is equal to the ion speed of sound c given by 

c = (kT,/m,)l’Z (1) 

where k is Boltzmann’s constant, T, is the electron temperature and m, is the ion 
mass. Andrews and Stangeby (1970) have pointed out that this result still holds 
even when ionization and collisions are taken into account. 

In  the present paper we consider a spherical probe immersed in a collisionless 
ionization-free plasma with a superimposed ion drift. The  theory of a spherical probe 
in a collisionless plasma with no asymmetry in the ion flow is well documented (Mott- 
Smith and Langmuir 1926, Bohm et al. 1949, Allen et al. 1957, Bernstein and 
Rabinowitz 1959, Lam 1965, Bienkowski and Chang 1968). However, in most situa- 
tions of practical interest (including many laboratory discharges, vacuum switches, 
gas-filled valves, thyratrons and space-satellites) asymmetrical ion flow exists. This 
means that existing probe theories are in doubt. At high pressures, for example, 
Thomas (1969) and Clements and Smy (1969) have shown that flow effects can pro- 
duce two orders of magnitude difference in probe currents from those measured with 
no flow (Su and Lam 1963). We shall investigate flow effects at low pressures to see 
how low pressure probe theories need to be modified. 

142 
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2. The general approach 
Consider a plasma with ion flow but no collisions or ionization. The ion motions 

follow the steady state continuity and momentum equations (see for example Woods 
1965) 

V .  (nv)  = 0 (2) 
(3) v. (nvv) = - (ne/m,)VV 

where n is the ion number density, v is the ion drift velocity, e is the ionic charge 
and V is the electrostatic potential. The  plasma is assumed to be quasi-neutral. The 
probe voltage is sufficiently negative that the electron current drawn by the probe is 
negligible compared with random electron current in the plasma; then we can take 
(Mott-Smith and Langmuir 1926) the electrons to have a Boltzmann density distri- 
bution 

where no is the number density in the undisturbed plasma. For convenience, we 
shall only consider plasmas in which the ion flow is irrotational, so that 

n = no exp(eV/kT,) (4) 

v x v = o .  ( 5 )  

(6) 

Eliminating n and V from equations (2)-(5) yields 

c 2 v .  z, = +(v .V)& 
Thus, the problem of steady collisionless ion flow in an ionization-free plasma 
reduces to that of solving a first-order nonlinear partial differential equation in the 
ion velocity subject to various prescribed boundary conditions. Let us call this 
equation (6) the general ion pow equation. 

Figure 1. Ion trajectories around the probe for M = 0.1. 

As an example consider collisionless ion flow past a spherical probe which is biased 
negatively with respect to the plasma (see figures 1 and 2). In  order to simplify the 
analysis, we ignore the effect of the supporting rod and take the ions to be unidirec- 
tional at infinity (which makes v x v vanish identically everywhere) with a velocity 
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U such that U2/c2 < 1, that is, the ion flow is substantially subsonic. If the ions are 
far enough away from the probe then the probe field is very weak, so that z2jc2 4 1 
and compressibility effects are negligible. Let us call this region thefree stream. This 
situation is quite different for the ions in the plasma close to the probe (the pre-sheath 

Figure 2. Ion trajectories around the probe for M = 0.3. 

region). According to the theory of a spherical probe collecting a radially symmetric 
ion flow (Bohm et al. 1949) we know that z2/c2 -+ 1 at the plasma boundary surround- 
ing the probe. We can similarly expect u2/c2 to be of order unity near the probe in 
our case with asymmetrical ion flow. Hence, compressibility effects in the pre-sheath 
region are significant; they can be dealt with approximately by taking linear per- 
turbations of the radially-symmetric solution. In  the absence of flow the region 
containing the pre-sheath extends out to infinity. 

The  general approach in this paper will be to find approximate solutions to the 
general ion flow equation (6) that are valid in the free stream and in the pre-sheath 
region respectively, and then to join the two solutions together at some appropriate 
boundary. 

3. The free stream 
At a sufficient distance from the probe the influence of the electric field is very 

weak and u2/c2 << 1. In  this region of the flow (the free stream) equation (6) reduces 

v. v 2: 0. 
Defining a velocity potential +1 (where subscript 1 refers to the free stream), we have 
approximately that 

The  ion velocity in the free stream is vl = - V+l. Equation (7) is Laplace's equation. 
Using spherical polar coordinates (Y, 8, +) with the z axis parallel to the ion flow at 
infinity and assuming azimuthal symmetry (with 2/2+ = 0), those solutions which are 
finite on the axis of symmetry take the form 

to 

v2y$ = 0. (7) 

m 

4 1  = 2 (AmYm+Bmr-"-')Pm(p) 
m=O 

where p = cos % and P,(p) is the Legendre polynomial of integral order m (see for 
example, Sneddon 1956). At large distances from the probe we require ulr --f U cos 8, 
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so that A ,  = 0 for m # 1. Hence 
'2. 

dl = - UrP1(p) + 2 B,r-m-lP,(p). (8) 
m=O 

T h e  B,  are obtained when we match the above solution to that describing the pre- 
sheath at some appropriate boundary. 

4. The pre-sheath 
In  the pre-sheath, close to the probe, the ion flow is substantially radially sym- 

metric. For a first approximation s/%' = 0 and the general ion flow equation (6) 
yields 

o r  
dvo 2a0 

dr  
-- _ -  

Y( 1 - G o y )  * 
(9) 

Note that doo/dr -+ CO as t i o  -+ - e ,  that is, the plasma solution breaks down (and 
a sheath develops) as the ions approach the speed of sound. If the sheath thickness is 
negligible compared with the probe radius a we can take the plasma boundary to be 
effectively at r = a on the plasma scale, and equation (9) can be integrated analytically 
t o  give the radially symmetric velocity profile as 

Figure 3 shows this variation of vo/c  with ria. 

rla 
I 2 3 

01 I I I 

Figure 3. The  radially symmetric velocity profile. 

For a better approximation, we must allow for the effect of the asymmetry to the 
ion flow in the pre-sheath. Let 

z)2 = Zl,(Y) + 7J*(Y, e )  
where the subscript 2 refers to the pre-sheath and the asterisk to the perturbed part 
of the solution. Substituting for v2 from the above equation into the general ion flow 
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equation (6) and expanding in terms of the velocity components ,we have 

where 

is nonlinear in U,* and U,*:. Let us solve equation (1 1) in the cases where the non- 
linear terms can be neglected. This is so when IP < c2, and the accuracy required 
can be judged from the condition Liz < c2 which we have already used in the free- 
stream. Provided v* is O( U )  our approximation will be consistent. Examination of 
equations (42) and (43) together with (28) shows that this is indeed the case. 

Neglecting N ,  equation (1 1) approximates to 

Defining a perturbed velocity potential +*, we have vr* = - ;+*/ay and 
= -r-18+*/88, and equation (12) becomes 

Whereas equations (6) and (1 1) are highly nonlinear first-order equations, equa- 
tion (13)  is a linear second-order partial differential equation in 4". We can look for 
separable solutions of the form 

4* = R(T) T(0) 

where R is a function of Y only and T is a function of 0 only. Then 

1 d2R dR 1 d{sin O(dTjd8)) 

The left-hand side cannot invoIve e and the right-hand side cannot involve r, so both 
sides must be equal to a constant, which we shall write as m(m+ 1) for convenience 
(and without loss of generality). We now have two equations 

-(+ R dr2 +g-) dr = - ( T sin e) de 

d2R dR 
dr2 dr 

f- +g- - m ( m + l ) R  = 0 

d{sin %(dT}dB)) 
de 

+m(m+l)TsinB = 0. 
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The solution of equation (14) is 

R = R,(Y), say 

which we shall determine after matching the solution in the pre-sheath to the solution 
in the free stream on some suitable boundary. Equation (15) reduces to Legendre’s 
equation of order m: 

when we put p = cos 8. As in the case of the free stream (see $ 3 )  we are only inter- 
ested in the solution which is finite on the axis of symmetry, 

where C, is a constant and P, is the Legendre function or polynomial of order m. 
The  complete solution of equation (1 3) for the linearized asymmetric perturbation 
can be expressed as the sum over integral values of m, 

m 

’ 4* = 2 CmRm(r)Pi (p)*  
m = l  

The  total velocity potential in the pre-sheath including 
comes 

m 

the symmetric solution be- 

where 40(r)  is the radially symmetric velocity potential such that v 0  = -d+,,/dr. 
The  C, are obtained when we match the above solution to that for the free stream 
given in 4 3.  

5. Matching the free stream and the pre-sheath solutions 
Our solution for the velocity potential in the free stream &, given by equation (€9, 

is reasonably accurate provided that v2/c2 4 1. Since c2 approaches c2 near the probe, 
there is clearly a limit to the extent to which we can apply this solution. Similarly, in 
the pre-sheath region, 42, given by equation (16), is accurate near the probe but not 
at a great distance from it. Let us introduce an artificial surface surrounding the probe 
where we shall attempt to match the free stream and the pre-sheath solutions. 

CIearIy, the components of the velocity must be continuous, so that 

and 

Taking the surface to be the sphere r = s, say, equations (8) and (16) give 
?) CO 

- UPl- 2 B, , , (WZ+~)S-~-~P ,  = - v ~ ( s ) +  2 C,R,’(s)P, (17) 
m=O m=O 
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and 
X m 

- UsP,’+ 2 B,s-~-’P,’ = 2 C,R,(s)P,‘ (18) 
m = l  m = l  

where 
R,’ = dR,/ds. 

Using the recurrence relation 

P m +  l’(1.1 -4’m’(p) (m+ 1 ) P m ( P )  (19) 

- Bos- = - Zjo(S) (20) 
- U - ~ B ~ S - ~  = C1R,’(s), for nz = 1 (21) 

-B,(m+ l ) ~ - , - ~ =  CmRm’(s), for m > 1 (22) 

- LrS+Bls-2 = C1R,(S), for m =:1 (23 1 
CmRm(s)) for m > 1 (24) 

in equation (18) and equating coefficients (since the P, are an orthogonal set of func- 
tions), we have 

from equation (17)) and 

B , ~ - m - 1  = 

from equation (18) (the m = 0 terms vanish identically). 

form > 1. or 
From equations (22) and (24), we can see that either B, and C, are always zero 

wz + 1 R,’(s) 
--= - 

s Rm(s) 
In  fact it can be shown numerically that 

but it is sufficient for our present purposes to note that Rm(s) is a well-defined function, 
being a solution of equation (14). Equation (25))s not therefore in general satisfied 
so that 

- (26) B ,  = C, = 0, for-m > 1. 

From equations (21) and (23), we obtain 

and 
3 li’s B 

= - R,(s)(Z+a) 
where 

sR,’(s) x =  - 

Also, from equation (20) we have 

Bo = s2vo(s). (30) 
The  complete solutions for the velocity potentials in the free stream and the pre- 

sheath then become 
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and 

respectively. 

appeared !). 

$2 = + o ( y )  + C1R1(r) cos 6 (32) 

I t  only remains to evaluate Rl. (Fortunately the higher order R, have dis- 

Equation (14) gives 

This equation can be integrated analytically. I t  is, in fact, an exact differential 

dr 

Integrating, setting RI = R, and dR,/dr = 0 at the plasma boundary I = a (other- 
wise the second term in equation (33) would blow-up), we have 

2R1 2111, 
a 

Dividing throughout by v0(l  -7;02/c2) and using equation (9), we obtain 

(1 dR1 R1 YRa - -- 
v0 duo vO2 azo2 

or 

Integrating again, using equation (lo), gives 

where 
R1 = R, (- 2){1 C +F(Y)}  

and this completes the solution. 
Equation (29) becomes 

2 - sc/av,(s) 
- 

(34) 

(35)’ 

using equations (34) and (35), and the full solution is given by equations (31) and 
(32) together with equations (27), (28), (30) and (35). 

6. Velocity, potential and density profiles 
We are now in a position to calculate the various physical quantities associated 

with the plasma flow. Consider first the free stream region. The ion velocity com- 
ponents are obtained by differentiating $1, given by equation (31), that is, 

V I r  = -a+,/ar 
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= (y3 B1 - U )  sine.  

The  total ion velocity is simply 

The  electrostatic potential is obtained by applying energy conservation: 

V ,  = -2pi(v12 - U2)/e. (40) 
The  number density of ions (or electrons) at any point is determined from the 
Boltzmann relation (4) 

n, = no exp(eVl/KTe). (41) 
Now consider the pre-sheath. Differentiating 932, given by equation (32), we 

find the velocity components 

and 
(42) 

1 a 4 2  = - -- 
r 20 

= C,r-lRl(r) sin B .  (43 ) 
c2,  V,  and n, in the pre-sheath region are determined as before and are given by 
substituting subscript 2 for 1 ,  in equations (39), (40) and (41). We showed in $4 
that v o  -+ - c  at the plasma boundary r = a and we have already used the condition 
that R,' = 0 there in deriving equation (34). Hence equation (42) gives 

ziz,(a) = - c  (44) 
thereby confirming Stangeby and Allen's (1970) theorem that the plasma boundary 
is a Mach surface. 

Also, from equation (43) the tangential velocity at the plasma boundary is 

v z e ( a )  = C,a-lR,(a) sin 0 (45) 
so that zZ8 vanishes on the axis of symmetry and is a maximum when 8 = B H .  

The total ion velocity is then 

v2(a)  = c{l + C12a-2R,2(a) sin zO)l~z (46) 
which means that, in general, the ions are actually supersonic at the plasma boundary. 

Equations (40) and (41) then give 

V,(a) = - ( ~ ) { l + C 1 2 a - 2 R l z ( a ) s i n 2 ~ - U 2 }  - (47) 

n2(a) = noexp[-~{1+C,2a-2R12(a)sin28-U2)] (48) 
and 

substituting subscript 2 for 1. 
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An interesting physical effect occurs on the axis of symmetry on the downstream 
side of the probe, arising from the fact that the probe actually draws ions over the 
whole of its surface. This is easily seen by considering equation (44); since the radial 
component of the ion velocity reaches sonic velocity over the entire plasma boundary, 
it follows that some ions reverse their direction of motion on the downstream side 
of the probe. Hence, there must exist a stagnation point (where the total ion velocity 
is zero) on the downstream side of the probe. This effect has been discussed qualita- 
tively by Lam and Greenblatt (1965). The electrostatic potential V ,  at the stagnation 
point where z' = 0 is found directly by applying energy conservation to the ions, 
that is, 

I n  principle we can choose our arbitrary separation into free stream and pre-sheath 
regions (i.e. we can choose the radius of the matching sphere) to make the stagnation 
point lie in either region. (Either v l r  or vpr ,  given by equations (39) and (42), can 
have zeros on the axis of symmetry 8 = 0.) However, our choice must be consistent 
with our approximations. We have assumed that in the pre-sheath there is a linear 
perturbation to the radially symmetric ion flow. I t  is therefore apparent without the 
need for detailed numerical computation (although this could be carried out if 
desired) that this approximation is better when the stagnation point is taken to lie outside 
the pre-sheath. Furthermore, the approximation made in the free stream is that 
v2 < c2 and this is clearly particularly good around the stagnation point (where 
v -+ 0) if it lies in the free stream. 

Thus we take the stagnation point to be in the free stream. Its actual position is 
obtained by setting 8 = v I r  = 0 in equation (37); this yields a cubic equation in 
r,/s 

V 0 -  - - ? p , I i 2 / e .  (49) 

Y ,  

vo(s) Yo 2(1 - E )  (?I +us-=- - 0 .  

Only one root of equation (50) is both real and positive, and this gives the position 
of the stagnation point; solutions with ro/s  < 1 are not allowed. The coefficients of 
equation (50) are functions of s, so the calculated position of the stagnation point 
depends on the choice of s, the radius of the matching sphere. Figure 4 shows 
numerically how the solution of equation (SO), ro/a, varies with S/U for various values 
of the Mach number (at infinity) M = U/c .  I t  can be seen that, for any given iW, 
there is a very flat minimum in Y,,/a; for convenience we choose the radius of the 
matching sphere s to give the minimum ro/a. Computation of uI2/c2, vZr ,  v28 and U,-, 
from equations (39), (42), (43) and (9) shows that the errors in the free stream and 
the pre-sheath solutions are both small. Hence this choice of s is reasonable. Table 1 

Table 1. Variation of the normalized position and potential at the 
stagnation point with Mach number 

r da 

3,534 
2.563 
1 a 9 1  2 
1.645 
1 *498 
1.403 

03 

eVolkTe 

-0.001 
-0,005 
-0.020 
-0.045 
-0.08 
-0.125 

0 
M 

0 
0.05 
0.1 
0.2 
0.3 
0 -4 
0 *5  
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gives the computed values of y o l a ,  from equation (50), and eVo/kTe, from equa- 
tion (49), for various LTf, The flatness of the minimum and, hence, the insensitivity 
of the position of the stagnation point both suggest that the particular choice of s is 
not very critical in obtaining an adequate approximation. 

M 

O ' 0 5 L  
4r 

i 

Figure 

, 1 

0 I 2 3 
s la 

Variation of the position of the stagnation point wiL-- t.-Z radius of t 
matching sphere for various hIach numbers. 

105 

: r----v/c v/c -- 

le 

Figure 5.  Normalized velocity, potential and density profiles on the axis of 
symmetry for M = 0.3 (the probe occupies -1 < zja < 1). 

Having chosen a satisfactory radius of the matching sphere s we can now calculate 
the coefficients Bo, 3, and C1, given by equations (27),  (28)  and (30). Figures 1 and 2 
show the ion trajectories for M = 0.1 and 0.3, respectively, which have been obtained 
numerically, starting at the probe surface and using the formula 

6 + arctan ( v e / w T )  

for the direction of the ion flow at any point with respect to the axis of symmetry. 
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cur and we are calculated numerically from equations (37),  (38), (42) and (43). ,4s 
would be expected from physical considerations, the stagnation point recedes from 
the probe as M decreases; for LM = 0 (the radially-symmetric case) the stagnation 
point is at infinity and V ,  is zero. Figure 5 shows the velocity, potential and density 
profiles on the axis of symmetry calculated numerically from equations (39), (40) and 

Figure 6. Contours of the normalized velocity vjc for M = 0.3. 

-3 -2 

-3t 
Figure 7. Contours of the normalized potential eV/kT, for M = 0.3. 
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(41) for = 0.3. Figures 6 and 7 are contour plots of velocity and potential, res- 
pectively, also for 214 = 0-3. Figures 5-7 all clearly show the stagnation point on 
the downstream side of the probe and the breakdown of the plasma solution at the 
probe itself (where the velocity, potential and density gradients normal to the probe 
surface blow-up). 

7. Saturated ion current and floating potential 
The ion current to a highly negative probe in a plasma with cold ions is essentially 

saturated; for a given 114 (i.e. a given ion flow velocity at infinity) the ion current 
drawn by the probe is independent of the voltage V,  applied to the probe, provided 
the sheath thickness is small compared with the probe radius. However, the ion 
current collected by the probe, Ii, does depend on and is given by 

Ii = 27ra2e n,(a)a2,(a) sin 0 de. sb 
Substituting for n2(a) and vZr(a)  from equations (44)  and (48), after some manipula- 
tion we obtain 

where 

and 

Ii = 47ra2noecF(/3) exp( - &( 1 - M 2  + 2,G2)} 

Typically ,5 < 3 ,  so that we can use the series 

m Q2 n 

Thus the fractional increase in ion current due to the flow velocity U (free stream 
Mach number AI) is 

Ari qnq - ii(o) _ -  - 
4 Ii(0) 

Figure 8 shows how G(M) varies with free stream ion flow M ;  G = 0 for M = 0' 
and we recover the case of a probe collecting a radially symmetric ion flow. G(iM)' 
represents a small but significant change in ion flow and so two points must be noted. 
The most obvious feature of this result is that G(.M) is still fairly small-only S o / ,  
-even when the plasma is flowing at half the speed of sound. Thus the ion current is 
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not very greatly influenced by flow (at least when it is subsonic). The  effect for low- 
pressures is limited to small fractional changes (rather than the two orders of magni- 
tude found in the high-pressure case) and the existing probe analyses, which assume 
spherical symmetry throughout the plasma, are substantially correct numerically. 

Nevertheless, the change in ion current is significant and should certainly be 
observable; it should be quite possible to use it to measure the ion velocity. Un- 
fortunately the absolute values of the electron temperature and plasma density are 
not usually known very accurately so the absolute accuracy of the ion flow measure- 
ment (which is directly related to these quantities) would not be very great. However, 
the basic electron parameters (no, Te) do not usually vary by more than a few per cent 
as we scan a plasma spatially with a probe. It should therefore be possible to measure 
relative differences in ion flow velocity across a plasma to within say Difficulties 
can however arise in determining saturated ion current since if the probe is biased 
sufficiently to repel most of the electrons it may influence the fields and ion flow for 
a fair way around the probe. I t  may therefore be preferable to work in terms of 
floating potential. 

The  electron current collected by the probe is given by 

using the Boltzmann relation (4) where me is now the electron mass; Vf is the probe 
potential. When the probe is floating the net current is zero. Equating (51) and (58) 
we find, with some rearrangement that 

Vf = - r:) [$( 1 + In (z)] 2nme - ln{l + G(M))] .  (59) 

T h e  fractional change in floating potential produced by the flow is therefore 

where W is the atomic weight of the ion species, ml/mH. Now i{l+ ln(mi/2 n-me)} is 
eVf/kTe for the no-flow case. It is the floating probe potential (with no flow) com- 
pared with the electron temperature (in volts). It varies from plasma to plasma, from 
3-34 for atomic hydrogen to 5-99 for mercury, like {1+0.15 In W)-l,  or a factor of 
nearly two over the whole periodic table. 

It may be noted that the fractional reduction in saturation ion current is the 
same for all gases (at a given flow velocity), although the absolute value of the current 
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does of course vary from gas to gas (like Thus the change in floating poten- 
tial is less than half that in ion saturation current. However, since a floating probe 
will disturb the plasma less than one biased sufficiently to collect only ion current, this 

41 I /i- 
0 0.2 0.4 

M 

Figure 8. Variation of G(M) with Mach number (at infinity) iM. 

measurement may be preferable. Floating potentials are usually repeatable to within 
a per cent or so, and so differences in ion flow velocity throughout a plasma should 
be measurable to within a few per cent. 

8. Conclusions 
A selfconsistent model can be obtained for subsonic ion flow past a negative 

spherical probe immersed in a collisionless ionization-free plasma. A stagnation 
point arises on the downstream side of the probe which clearly cannot exist in a sym- 
metrical, static situation. Although the saturation ion current and the floating 
potential given by previous analyses (which all assume spherical symmetry) are 
substantially correct, there is some dependence on the ion flow velocity (a few '/io at 
M = 0.5). Thus the change in floating potential can be used to measure ion flow. 
Apart from this, only slight modifications need to be made to low pressure probe 
theories in order to include flow effects. 
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